

Artificial oocyte activation: lonophore application

Pro, evidence for clinical readiness

Thomas EBNER

Kepler University, Linz, Austria

Conflict of Interest

This speaker has received payment for expert testimony for MSD, Merck, as well as Glycotope, and he is a consultant for Gynemed.

Outline

- 1. Principle of OA
- 2. Artificial oocyte activation (AOA)
- 3. Indications of ionophore use
- 4. Possible mechanisms of action
- 5. Safety issues
- 6. Future aspects

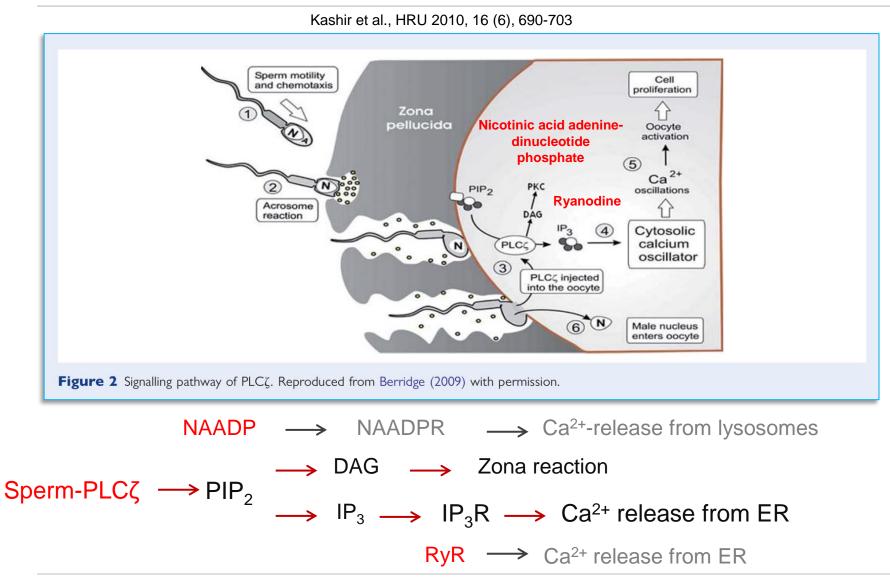
Principles of oocyte activation

- 1. Cumulus cell penetration
- 2. Sperm/oocyte binding and penetration
- 3. Sperm/oocyte fusion

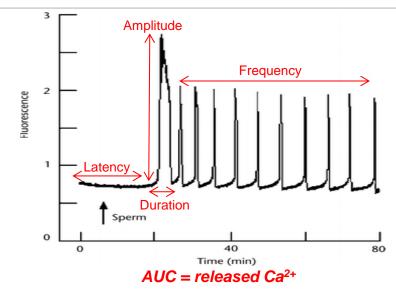
OA is a physiological process entailing

- 1. the release from MII arrest and completion of second meiotic division and
- 2. modifications of the zona pellucida to prevent polyspermy

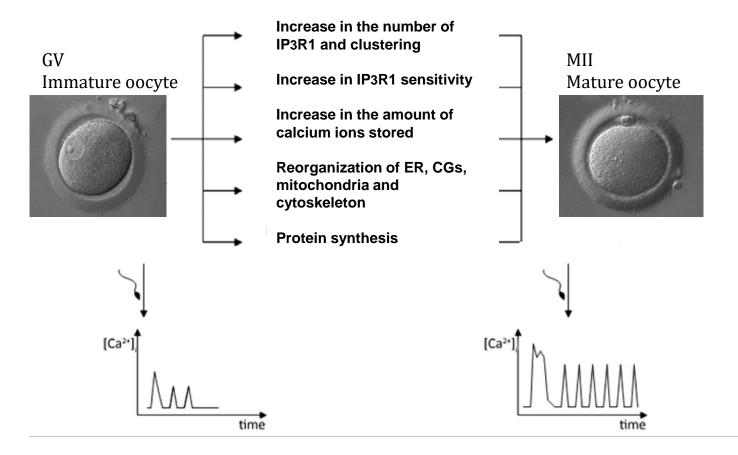
Sperm proteins as potential candidates for OA


- 1. Citrate synthase
- 2. Truncated form of c-kit tyrosine kinase receptor
- 3. Post-acrosomal WW-domain binding protein (PAWP)
- 4. Phospholipase C ζ

Swain and Pool, 2008; Kashir et al., 2010; Yeste et al., 2016

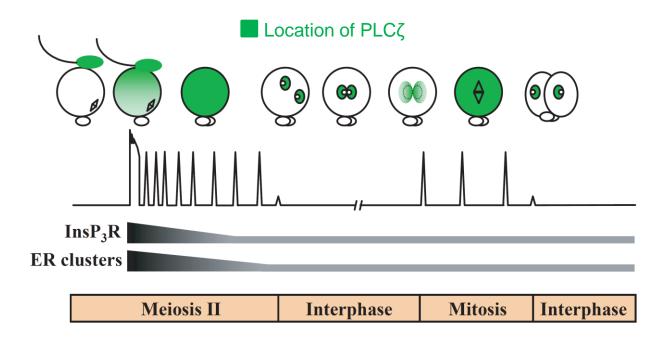

- 4. Oocyte activation
- 5. Sperm processing
- 6. PN formation

Ca²⁺ signal


- ✓ Sperm induced Ca²⁺ oscillations stimulate mitochondrial respiration
- ✓ The resulting ATP production in turn is required to maintain sperm-triggered Ca²⁺ waves

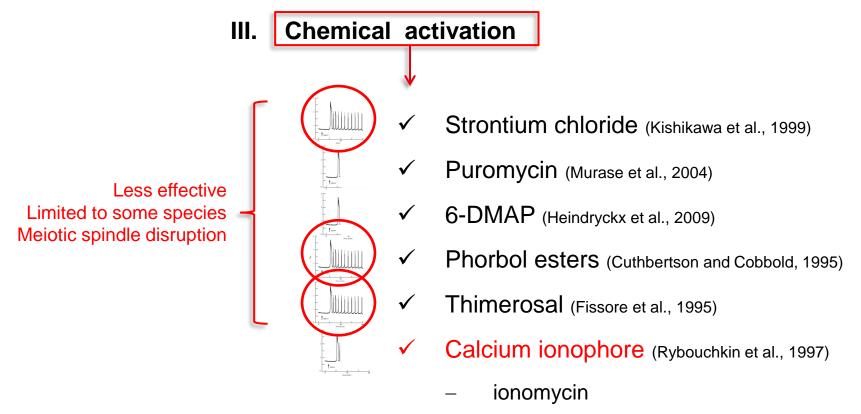
 The effectiveness of a calcium signal depends on its number, frequency, temporal modulation, and amplitude Kashir et al., 2010

Competency of Ca²⁺ release



Calcium signalling is affected by in vitro maturation, cryopreservation, and oocyte ageing

Courtesy of B. Heindryckx


Ca²⁺ and mitosis

- ✓ Oscillations cease with formation of both pronuclei
- ✓ Immediately prior to each mitotic division a single Ca²⁺ peak occurs
- \checkmark A close correlation between cell division and Ca²⁺ availability has been reported
- Sinusoidal Ca²⁺ fluctuations observed shortly before every mitotic division disappeared progressively in arrested human embryos
- ✓ Mitosis can be stopped using chelators

- Artificial oocyte activation (AOA)
 - I. Modified ICSI-technique
 - II. Electrical activation

calcimycin (A23187)

Indications

Reproductive BioMedicine Online (2015) 30, 359-365

Live birth after artificial oocyte activation using a ready-to-use ionophore: a prospective multicentre study

Thomas Ebner ${}^{\mathfrak{s}, \mathfrak{s}}$, Markus Montag ${}^{\mathfrak{b}, \mathfrak{l}}$, on behalf of the Oocyte Activation Study Group

Reproductive BioMedicine Online (2012) 24, 521-526

The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle

Markus Montag ^{a,b,*}, Maria Köster ^b, Katrin van der Ven ^b, Ulrike Bohlen ^b, Hans van der Ven ^b

^a Department of Gynecological Endocrinology and Fertility Disorders, University of Heidelberg, Voβstr. 9, 6915 Heidelberg, Germany: ^b Department of Gynecological Endocrinology and Reproductive Medicine, University of Bonn, Bonn, Germany

Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility

Thomas Ebner, Ph.D.,^a Maria Köster, Ph.D.,^b Omar Shebl, M.D.,^a Marianne Moser, Ph.D.,^a Hans Van der Ven, M.D.^a Gernot Tews, M.D.,^a and Markus Montag, Ph.D.^{b.C} ei Andes Frauer und Kinderklink, Knedenwunchertertum, Linx, Autrisi,^a Gyneocologial Endocrinology and Reproductive Medicine, University of Bonn, Bonn; and^a Gyneoclogical Endocrinology and Fertility Disorders, University of Heidelberg,

J Assist Reprod Genet DOI 10.1007/s10815-015-0486-2

CASE REPORT

Healthy twin live-birth after ionophore treatment in a case of theophylline-resistant Kartagener syndrome

T. Ebner^{1,3} • M. Maurer^{2,3} • P. Oppelt^{1,3} • R. B. Mayer^{1,3} • H. C. Duba^{2,3} • W. Costamoling⁴ • O. Shebl^{1,3}

Iman Reproduction, Vol.30, No.1 pp. 97–102, 2015

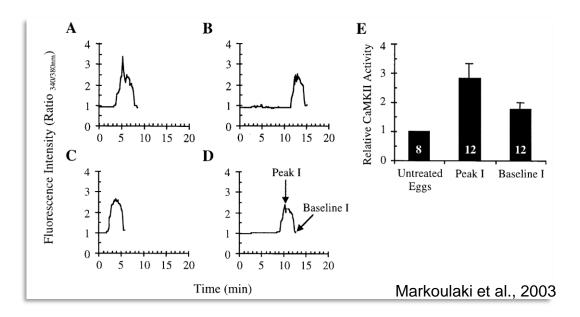
Treatment with Ca²⁺ ionophore improves embryo development and outcome in cases with previous developmental problems: a prospective multicenter study

T. Ebner^{1,2,e}, P. Oppelt^{1,2}, M. Wöber³, P. Staples⁴, R.B. Mayer^{1,2}, U. Sonnleitner⁵, S. Bulfon-Vogl⁶, I. Gruber⁷, A.E. Haid^{1,2}, and O. Shebl^{1,2} **Complete fertilization failure in previous ICSI cycle(s)**

Low fertilization rate (<30%) in previous ICSI cycle(s)

Severe male factor (crypto- and azoospermia)

Severe male factor (Kartagener syndrome)


Developmental arrest, delay, and problems

Theoretical mechanism of action?

 The downstream protein CaMKII oscillates in temporal synchrony with the repititive Ca²⁺-peaks

This indicates that artificial Ca²⁺ recruitment can result in a proper downstream response

Theoretical mechanism of action?

 CaMKII activity rises and falls with the initial Ca²⁺ transient in a directly proportional manner (Markoulaki et al., 2003)

This reflects the situation commonly found in artificial oocyte activation (which is the presence of a single Ca²⁺ peak)

✓ Once activated autophosporylation of CaMKII keeps the enzyme active even without the presence of calcium (Johnson et al., 1998)

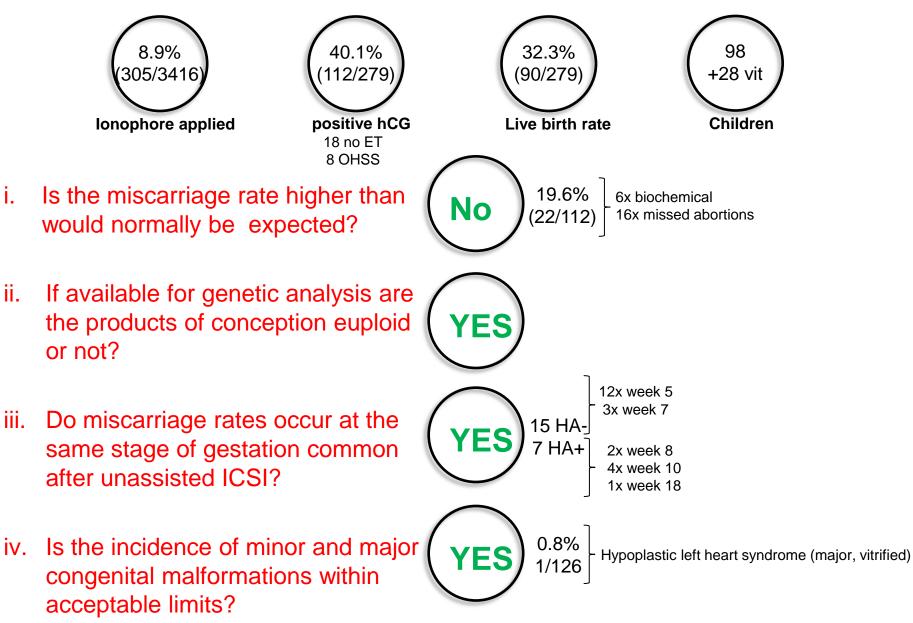
This scenario would explain how a single calcium stimulus can be transmitted without a physiological repetitive pattern

 In human, a reduction in frequency can be compensated by both a higher amplitude as well as a longer total duration of the Ca²⁺ signal (Nikiforaki et al., 2014)

Oocyte activation is tolerant to pertubations of the Ca²⁺ oscillation pattern as long as the total calzium amount is uncompromised (and passes a critical threshold)

 Safet 	y issues	· ·	on and more research in the use of ionophores in ICSI	
	Reproductive BioMedicine Online (20 COMMENTARY Assisted yes, to Luigia Santella ª, Bri	out where do we drav	w the line?	
Current Trends in Clinical Embryology 2015; 2 (4): 149-152 Commentary Oldie but Goldie or opening Pandora's box? Thomas Ebner ^{1,2} Omar Shebl ^{1,2} Lodovico Parmegiani ³			COMMENTARY Artificial oocyte activation: evidence for clinical readiness T Ebner ^{a,*} , M Montag ^b	

Reproductive BioMedicine Online (2015) 30, 323-324


✓ If it is not obvious that artificial oocyte activation is needed a sibling oocyte approach should be applied

✓ Assisted oocyte activation is not beneficial for all patients (Montag et al., 2012; Vanden Meerschaut et al., 2012)

✓ Artificial oocyte activation still needs to be considered as experimental (but seems to be safe)

Oldie but Goldie or opening Pandora's Box

- 5 years of ready-to-use ionophore treatment in Linz, Austria (2011-2015) -

Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte

Antonio Capalbo, Ph.D.,^{a,b} Christian S. Ottolini, B.Sc.,^{c,d} Darren K. Griffin, Ph.D.,^d Filippo Maria Ubaldi, M.D., M.Sc.,^{a,b} Alan H. Handyside, Ph.D.,^{c,d,e} and Laura Rienzi, B.Sc., M.Sc.^{a,b}

TABLE 2

Aneuploidies identified in normal and abnormal activated oocytes.

Patient	Oocyte ID	aCGH analysis	SNP genotyping analysis	No. of polar PB, PN	Amplification ty
Normally	activated (2PB1F	PN and 2PBOPN)			
1	1.1	-5, -10, +20	-5, -10, +20	2PB, 1PN	SurePlex
	1.2	+11, -21	+11, -21	2PB, 1PN	SurePlex
2 2.1	+22	+22	2PB, 1PN	SurePlex	
	2.3	+1	+1 ^a	2PB, 1PN	SurePlex
2.5	Euploid	Euploid	2PB, 1PN	SurePlex	
4	4.1	-4	-4	2PB, 1PN	SurePlex
	4.2	Euploid	Euploid	2PB, 1PN	SurePlex
	4.3	Euploid	Euploid	2PB, 1PN	SurePlex
	4.4	Euploid	Euploid	2PB, 1PN	SurePlex
5	5.1	Euploid	N/A	2PB, 1PN	SurePlex
	5.2	-13	N/A	2PB, 1PN	SurePlex
	5.3	Euploid	N/A	2PB, 1PN	SurePlex
6	6.2	Euploid	Euploid	2PB, 1PN	MDA
	6.3	Euploid	Euploid	2PB, 1PN	MDA
7	7.3	Euploid	Euploid	2PB, 1PN	MDA
	7.4	-4	-4	2PB, 1PN	MDA
8	8.1	-6, -18, +20	-6, -18, +20	2PB, 1PN	MDA
	8.2	Euploid	Euploid	2PB, 1PN	MDA
	8.3	Euploid	Euploid	2PB, 1PN	MDA
9	9.1	Ń/A	Euploid	2PB, 1PN	MDA
10	10.1	N/A	-17	2PB, 1PN	MDA
	10.2	N/A	Euploid	2PB, 1PN	MDA
	10.3	N/A	Euploid	2PB, 1PN	MDA
	10.4	N/A	Euploid	2PB, 1PN	MDA
Normally a	activated 2PBOP	'n			
2	2.2	++15	+15	2PB, OPN	SurePlex
3	3.1	Euploid	Euploid	2PB, OPN	SurePlex
7	7.2	-13, +20, -22	-13, +20,° -22	2PB, OPN	MDA
Abnormal	ly activated				
2	2.4	-13	-13	2PB, 2PN	SurePlex
6	6.1	Euploid	N/A	1PB, >2PN	MDA
7	7.1	Euploid	N/A	2PB, 2PN	MDA
11	11.1	+1, +4, +15, +16, +17, -18, -22	N/A	2PB, 2PN	SurePlex
		genomic hybridization; N/A = not available; PB = polar a meiosis two segregation error.	body; PN = pronucleus; SNP = single-n	ucleotide polymorphism.	

Capalbo. Aneuploidies after artificial activation. Fertil Steril 2015.

"There is no evidence that AOA causes a widespread increase in chromosome segregation errors in meiosis II"

100µM

59.3% euploid

Reproductive BioMedicine Online (2011) 23, 234-244

Methodology matters: IVF versus ICSI and embryonic gene expression

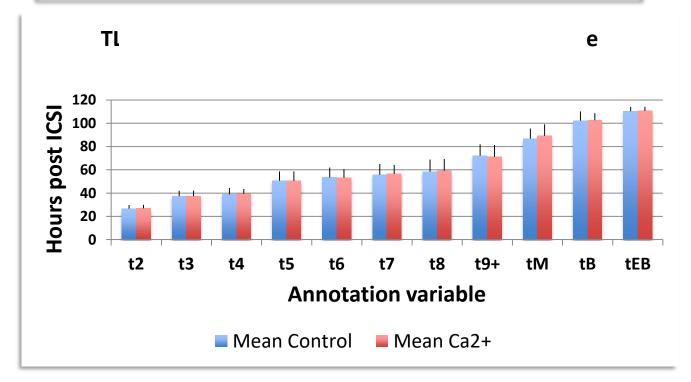
Phillip J Bridges ^a, Myoungkun Jeoung ^a, Heyoung Kim ^a, Jung Ho Kim ^b, Dong Ryul Lee ^b, CheMyong Ko ^{a,*}, Doris J Baker ^{a,*}

^a Division of Clinical and Reproductive Sciences, University of Kentucky, Lexington, KY 40536, USA, ^b Fertility Center of CHA Gangnam Medical Center, CHA University, 135-080 Seoul, South Korea SrCl₂

132 genes in total

(197 in ICSI vs IVF)

Туре	Function	Name	Entities	P-value
Development	Cellular	Ureteric bud branching	16	0.00469
	Neural	Peripheral nervous system development	14	0.00398
I		Neural crest cell development	5	0.00798
	Organ	Organ morphogenesis	98	0.00007
		Thyroid gland development	5	0.00147
		Inner ear morphogenesis	29	0.00197
		Middle ear morphogenesis	6	0.00324
		Embryonic gut development	5	0.00792
		Pattern specification process	28	0.00890
	Structural	Cartilage development	28	0.00659
		Embryonic skeletal system morphogenesis	26	0.00720
Metabolism		Lipid glycosylation	7	0.00147
		Retinol metabolic process	10	0.00297
Response	Cellular	Glial cell differentiation	10	0.00072
		Contraction concentration	40	0.00005
			265	0.00036
			EO	


	1	Synaptic transmission		
	Other	Detection of chemical stimulus involved in sec		
	1	Visual perception	93	0.00001
	1	Response to stimulus	84	0.00006
	1	Digestion	17	0.00629
	1	Acute-phase response	15	0.00840
Signalling	1	G-protein coupled receptor protein signalling pathway	216	0.00000
	1	Signal transduction	805	0.00008
	1	Cell surface receptor linked signal transduction	115	0.00014
	1	G-protein signalling, coupled to cyclic nucleotide second messenger	14	0.00026
	1	Cell-cell signalling	103	0.00115
	1	Inositol phosphate-mediated signalling	5	0.00651
		G-protein signalling, coupled to cAMP nucleotide second messenger	10	0.00783
	-	(Table 4 c	ontinued on	next page)

ESHRE, London, 2013

O-215 Does oocyte activation influence morphokinetic parameters of embryos: a comparative analysis using time-lapse imaging

M. Montag, B. Toth, J. Weigert, and T. Strowitzki Universitäts-Frauenklinik, Abt. Gynäkol. Endokrinologie & Fertilitätsstörungen, Heidelberg, Germany

Reproductive BioMedicine Online (2014) 28, 54-63

Neonatal and neurodevelopmental outcome of children aged 3–10 years born following assisted oocyte activation

Frauke Vanden Meerschaut ^{a,*}, Evelien D'Haeseleer ^b, Hannelore Gysels ^c, Ylenia Thienpont ^c, Griet Dewitte ^d, Björn Heindryckx ^a, An Oostra ^d, Herbert Roeyers ^c, Kristiane Van Lierde ^b, Petra De Sutter ^a

 ✓ Language skills
 ✓ Motor skills
 ✓ Cognition
 were found to be within
 expected ranges

Injection of 0.1 mol/l CaCl₂ together with spermatozoa during ICSI, followed 30 min later by a 2-fold exposure to 10 μmol/l ionomycin for 10 min, 30 min apart

Table 3 Scores of the follow up by assessment.						
Test and age group	No. of children	Norm	Score			
Cognition WPPSI-III-NL (\leq 7 years)	21 20	100	Verbal IQ 102.8 (96.4–109.2) (77–129)	Performal IQ 105.0 (97.8–112.2) (74–142)	Full scale IQ 104.2 (97.5–110.8) (85–144)	
WISC-III-NL (>7 years)	1	100	123	130	131	
Language	20		Receptive scale	Expressive scale	Total percentile score	
RTOS (<5 years)	8	50	82.0 (63.4–100.7) ^a (35.5–99)	73.3 (49.4–97.2) ^b (30–99)	78.2 (57.2–99.2) ^c (33.3–99.0)	
CELF-IV-NL (\geq 5 years)	12	50	(35.5 77) 32.5 (7.3–57.7) ^a (3.6–94.5)	40.9 (16.6–65.2) ^b (7.1–88.5)	40.1 (16.8–63.4) ^c (9.1–89.7)	
Motor skills	19		Manual dexterity	Aiming and catching	Balance	Total percentile score
Movement ABC-II-NL (3—6 years)	17	50	42.0 (24.4–58.7) (1–95)	43.8 (29.5–58.0) (2–95)	41.5 (25.1–57.9) (5–91)	37.1 (22.3–52.0) (2–84)
Movement ABC-II-NL (7–10 years)	2	50	56.5 (NA) (50-63)	21.0 (NA) (5-37)	77.0 (NA) (63–91)	50.0 (NA) (37–63)
Autism screening	16		Score			
SCQ (\geq 2 years)	16	<15	6.4 (4.5–8.3) (0–13)			
Maladaptive behaviour screening	19		Internalizing broadband	Externalizing broadband	Total score	
CBCL (1.5–5 years)	11	<70	50.5 (42.7–58.2) (33–74)	47.6 (42.1–53.0) (35–60)	48.6 (42.5–54.8) (30–63)	
CBCL (6-18 years)	8	<70	38.4 (33.6–43.2) (33–50)	39.1 (35.0–43.2) (34–48)	37.3 (32.0–42.5) (29–45)	
TRF (1.5–5 years)	4	<70	47.5 (41.3–53.7) (44–53)	44.8 (36.8–52.7) (38–49)	45.5 (41.7–49.3) (44–49)	
TRF (6–18 years)	4	<70	43.5 (31.7–55.7) (37–52)	(30-47) 42.7 (40.9-44.1) (41-43)	42.5 (32.1–52.9) (33–48)	

What to do if there is no success with ionophore treatment?

✓increase exposure time

- √switch to 2-fold exposure
- ✓ switch to combination of 2 ionophores (e.g., calci- and ionomycin)
- ✓ more invasive approach (e.g., direct injection of CaCl₂ & x2 ionomycin)
- ✓use recombinant PLCζ

Taken together, it seems that human oocytes can respond to a wide range of intracellular Ca²⁺ signalling parameters and have a surprisingly high rate of tolerance for prolonged changes in cytosolic Ca²⁺

So far neonatal outcome is promising

AOA is in the transition process from experimental to clinical (provided that it is applied with a proper indication)

Thank you very much for your kind attention

Prof. Dr. Peter OPPELT Assoc.Prof. Dr. Omar SHEBL Dr. Alwin HABELSBERGER Dr. Elisabeth RADLER Dr. Richard B. MAYER Manuela PUCHNER Doris BRANDSTETTER Esther MITTERMAIR Laudia HADJARI